Physiology, metabolism Adaptation of Lactobacillus sakei to meat: a new regulatory mechanism of ribose utilization?

نویسندگان

  • Régis STENTZ
  • Monique CORNET
  • Stéphane CHAILLOU
  • Monique ZAGOREC
چکیده

Lactobacillus sakei is a lactic acid bacterium commonly found on meat and meat products. Meat is a rich substrate but contains small amounts of sugars, mainly glucose and ribose. The phosphotransferase system (PTS) is a multienzymatic complex responsible for sugar uptake. It is also involved in the regulation of metabolism through various mechanisms (catabolite activation and repression, inducer expulsion and exclusion). The ptsHI operon of L. sakei, encoding the general enzymes of the PTS, was studied and mutants were constructed. On ribose, these mutants grow twice as fast as the wild-type strain. This phenotype was never described in other bacteria and suggests that the PTS regulates ribose utilization. When compared to what is known from the regulations involving the PTS in other bacteria, this mechanism might be new. In Bacillus subtilis and Escherichia coli, in which ribose catabolism was investigated, ribose is transported by an ABC transporter, encoded by rbsABCD genes and then phosphorylated by the rbsK encoded ribose kinase. Ribose-5P is then metabolized through the pentose-P pathway involving xylulose-5P phosphoketolase and acetate kinase. Whereas phosphoketolase and acetate kinase activities remained unchanged in L. sakei ptsI mutants, ribose kinase activity and uptake were increased by a factor of 2.5 and 1.5, respectively. The target of the PTS regulation would thus be transport and/or phosphorylation of ribose. The gene cluster encoding a ribose transporter, ribose kinase and a regulator was cloned and sequenced. In L. sakei no gene encoding RbsA, RbsB or RbsC could be found. However, rbsD was present as well as a new gene rbsU, encoding a protein homologous to a glucose transporter responsible for facilitated diffusion of glucose. The rbsUDK operon is induced by ribose via the regulator RbsR encoded by rbsR located downstream of rbsUDK. In ptsI mutants, this operon was not overexpressed on ribose. This shows that the regulation of ribose utilization is not a transcriptional regulation. Upstream from the rbs operon, a gene encoding acetate kinase (ackA) was found. In other bacteria in which these genes were identified, ackA and the rbs operon are not linked. Moreover, in B. subtilis, ackA is regulated by catabolite activation whereas the rbs operon is repressed by catabolite repression, two mechanisms involving the PTS. In L. sakei, ackA and the rbs operon are adjacent on the Lait 81 (2001) 131–138 131 © INRA, EDP Sciences, 2001 * Correspondence and reprints Tel.: (33) 1 34 65 22 89; fax: (33) 1 34 65 21 05; e-mail: [email protected] ** Present address: Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494.

The genome sequence of Lactobacillus sakei 23K has revealed that the species L. sakei harbors several genes involved in the catabolism of energy sources other than glucose in meat, such as glycerol, arginine, and nucleosides. In this study, a screening of 15 L. sakei strains revealed that arginine, inosine, and adenosine could be used as energy sources by all strains. However, no glycerol catab...

متن کامل

Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products

Among lactic acid bacteria of meat products, Lactobacillus sakei is certainly the most studied species due to its role in the fermentation of sausage and its prevalence during cold storage of raw meat products. Consequently, the physiology of this bacterium regarding functions involved in growth, survival, and metabolism during meat storage and processing are well known. This species exhibits a...

متن کامل

Ribose utilization in Lactobacillus sakei: analysis of the regulation of the rbs operon and putative involvement of a new transporter.

A 7-kb DNA fragment of Lactobacillus sakei, containing the rbsD, rbsK and rbsR genes was sequenced. The genes responsible for ribose utilization are organized differently from what was previously described for model organisms such as Escherichia coli and Bacillus subtilis. No gene encoding RbsA, RbsB and RbsC, the subunits of the ribose ABC-transporter, were present in the rbs gene cluster. Ins...

متن کامل

Catabolism of N-acetylneuraminic acid, a fitness function of the food-borne lactic acid bacterium Lactobacillus sakei, involves two newly characterized proteins.

In silico analysis of the genome sequence of the meat-borne lactic acid bacterium (LAB) Lactobacillus sakei 23K has revealed a repertoire of potential functions related to the adaptation of this bacterium to the meat environment. Among these functions, the ability to use N-acetyl-neuraminic acid (NANA) as a carbon source could provide a competitive advantage for growth on meat in which this ami...

متن کامل

Apoptotic Induction in Human Colorectal Adenocarcinoma Cell Line and Growth Inhibition of Some Gastrointestinal Pathogenic Species by Lactobacillus Sakei Metabolites

Background and Aim: Lactobacillus is the most important genus of lactic acid bacteria and the use of some species of lactobacillus with the probiotic potential can be effective for inhibition of the growth of some pathogens and control of  gastrointestinal diseases and cancers. In this study, the pro-apoptotic and antimicrobial effect of Lactobacillus sakei on human colorectal adenocarcinoma c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001